导航中医药

 找回密码
 注册
查看: 1482|回复: 0
打印 上一主题 下一主题

一般系统论

[复制链接]
跳转到指定楼层
1
发表于 2018-11-2 22:06:19 | 只看该作者 回帖奖励 |正序浏览 |阅读模式
一般系统论

编辑

   


历史背景

系统的存在是客观事实,但人类对系统的认识却经历了漫长的岁月,对简单系统研究得较多,而对复杂系统则研究得较少。直到20世纪30年代前后才逐渐形成一般系统论。一般系统论来源于生物学中的机体论,是在研究复杂的生命系统中诞生的。1925年英国数理逻辑学家和哲学家N.怀特海在《科学与近代世界》一文中提出用机体论代替机械决定论,认为只有把生命体看成是一个有机整体,才能解释复杂的生命现象。系统思维最早出现在1921年建立的格式塔心理学,还在工业心理学研究中1958年Parry J.B.提出了系统心理学(system psychology)的词汇与概念。1925年美国学者A.J.洛特卡发表的《物理生物学原理》和1927年德国学者W.克勒发表的《论调节问题》中先后提出了一般系统论的思想。1924~1928年奥地利理论生物学家L.von贝塔朗菲多次发表文章表达一般系统论的思想,提出生物学中有机体的概念,强调必须把有机体当做一个整体或系统来研究,才能发现不同层次上的组织原理。他在1932年发表的《理论生物学》和1934年发表的《现代发展理论》中提出用数学模型来研究生物学的方法和机体系统论的概念,把协调、有序、目的性等概念用于研究有机体,形成研究生命体的三个基本观点,即系统观点、动态观点和层次观点。1937年贝塔朗菲在芝加哥大学的一次哲学讨论会上第一次提出一般系统论的概念。但由于当时生物学界的压力,没有正式发表。1945年他发表《关于一般系统论》的文章,但不久毁于战火,没有引起人们的注意。1947~1948年贝塔朗菲在美国讲学和参加专题讨论会时进一步阐明了一般系统论的思想,指出不论系统的具体种类、组成部分的性质和它们之间的关系如何,存在着适用于综合系统或子系统的一般模式、原则和规律,并于1954年发起成立一般系统论学会(后改名为一般系统论研究会),促进一般系统论的发展,出版《行为科学》杂志和《一般系统年鉴》。虽然一般系统论几乎是与控制论、信息论同时出现的,但直到60~70年代才受到人们的重视。

   


发展与应用

1968年贝塔朗菲的专著《一般系统论──基础、发展和应用》,总结了一般系统论的概念、方法和应用。1972年他发表《一般系统论的历史和现状》,试图重新定义一般系统论。贝塔朗菲认为,把一般系统论局限于技术方面当做一种数学理论来看是不适宜的,因为有许多系统问题不能用现代数学概念表达。一般系统论这一术语有更广泛的内容,包括极广泛的研究领域,其中有三个主要的方面。①关于系统的科学:又称数学系统论。这是用精确的数学语言来描述系统,研究适用于一切系统的根本学说。②系统技术:又称系统工程。这是用系统思想和系统方法来研究工程系统、生命系统、经济系统和社会系统等复杂系统。③系统哲学:它研究一般系统论的科学方法论的性质,并把它上升到哲学方法论的地位。贝塔朗菲企图把一般系统论扩展到系统科学的范畴,几乎把系统科学的三个层次都包括进去了。但是现代一般系统论的主要研究内容尚局限于系统思想、系统同构、开放系统和系统哲学等方面。而系统工程专门研究复杂系统的组织管理的技术,成为一门独立的学科,并不包括在一般系统论的研究范围内(见系统科学)。

   


系统思想

编辑

系统思想是一般系统论的认识基础,是对系统的本质属性(包括整体性、关联性、层次性、统一性)的根本认识。系统思想的核心问题是如何根据系统的本质属性使系统最优化。

   


整体性

虽然系统是由要素或子系统组成的,但系统的整体性能可以大于各要素的性能之和。因此在处理系统问题时要注意研究系统的结构与功能的关系,重视提高系统的整体功能。任何要素一旦离开系统整体,就不再具有它在系统中所能发挥的功能。

   


关联性

关联性是指系统与其子系统之间、系统内部各子系统之间和系统与环境之间的相互作用、相互依存和相互关系。离开关联性就不能揭示复杂系统的本质。

   


层次性

一个系统总是由若干子系统组成的,该系统本身又可看作是更大的系统的一个子系统,这就构成了系统的层次性。T.米尔索姆曾把人类系统划分为11个层次。不同层次上的系统运动有其特殊性。在研究复杂系统时要从较大的系统出发,考虑到系统所处的上下左右关系。

   


统一性

一般系统论承认客观物质运动的层次性和各不同层次上系统运动的特殊性,这主要表现在不同层次上系统运动规律的统一性,不同层次上的系统运动都存在组织化的倾向,而不同系统之间存在着系统同构。

   


系统同构

编辑

系统同构是一般系统论的重要理论依据和方法论的基础。系统同构一般是指不同系统的数学模型之间存在着数学同构。常见的数学同构有代数系统同构、图同构等。数学同构有两个特征:①两个数学系统的元素之间能建立一一对应关系。②两个数学系统各元素之间的关系,经过这种对应之后仍能在各自的系统中保持不变。不同系统间的数学同构关系是等价关系,等价关系具有自返性、对称性和传递性,根据等价关系可将现实系统划分为若干等价类。同一等价类内,系统彼此等价。因此借助于数学同构的研究可在现实世界中各种不同的系统运动中找出共同规律。

研究数学同构有时要涉及数学同态。不同系统间的数学同态关系具有自返性和传递性,但没有对称性。因此数学同态只用于分类和模型简化,不能划分等价类。

对于许多复杂系统,不能用数学形式进行定量的研究,因此就有必要将数学同构的概念拓广为系统同构。人们常常把具有相同的输入和输出且对外部激励具有相同的响应的系统称为同构系统,而把通过集结使系统简化而得到的简化模型称为同态模型。一个系统根据研究的目的不同可以得出不同的同态模型,而对于结构和性能不同的系统,它们的同态模型的行为特征却可能存在着形式上的相似性。不同的学科领域之间和不同的现实系统之间存在着系统同构的事实,是各学科进行横向综合和建立一般系统论的客观基础。

   


开放系统

开放系统是一般系统论中最重要的基本概念。开放系统的特点是系统与外界环境之间有物质、能量或信息的交换。封闭系统则与此相反,它与外界环境之间不存在物质、能量或信息的交换。用系统思想来观察现实世界,几乎一切系统都是开放系统。物理学中的所谓孤立系统(即封闭系统)可看作是开放系统的一种特例。

为了明确一个系统的性质,必须首先确定系统边界,研究边界上的物质、能量或信息的交流情况。封闭系统一般具有刚性的不可贯穿的边界,而开放系统的边界具有可渗透性。但对于社会系统、经济系统、生态系统和观念系统,往往很难确定它们的边界。

   


封闭系统

热力学中的熵增加定律只能适用于孤立系统(即封闭系统),并不适用于开放系统。因为开放系统与环境之间有物质、能量或信息的交流,所以开放系统的运动在一定条件下可以是一个减熵的过程,能使系统趋向于组织化和有序化。系统有序化的方向正是系统所追求的目标方向,也表示了系统的目的性。复杂系统一般具有多目标,甚至互相矛盾的目标,这些目标需要通过各子系统之间的协调或协同作用才能达到。

因为开放系统与环境之间有物质、能量或信息的交流,开放系统的稳态是一种动态平衡。开放系统具有一定的自动调节能力,但保持系统的稳定性也有一定的限度。对于开放系统,从不同的初始条件出发和通过不同的途径可以达到相同的最终状态。这种现象称为系统的等终极性或系统发展的多途径性。对于各种社会系统,可以针对不同的初始状态,采取多种发展途径,实现同一目标。这种系统往往没有唯一的最优解,具有一定的灵活性。

开放系统的演化过程在一定条件下是一个减熵的过程,使系统的组织化程度或有序化程度不断提高,系统内部结构更趋复杂而精致,功能更趋完善,系统逐渐由低级向高级发展。地球上生物进化的历程就是开放系统演化的一种重要模式。

   


系统哲学

一般系统论是研究一切系统的共同规律的学科。一般系统论的广泛应用,不但引起科学技术界的广泛重视,而且也引起哲学界的浓厚兴趣。贝塔朗菲认为,系统作为新的科学范畴所引起的世界观方面的变化,就是系统哲学所要探讨的问题。

一般系统论的思想源泉是唯物辩证法,它的许多基本观点与唯物辩证法是一致的。系统哲学主要研究系统本体论和系统认识论等问题。系统哲学在哲学上的地位和作用是现代哲学界争论的焦点之一。

   


发展趋势

编辑

   


开创

贝塔朗菲创立的一般系统论,从理论生物学的角度总结了人类的系统思想,运用类比和同构的方法,建立开放系统的一般系统理论。他创立的一般系统论属于类比型一般系统论,对系统的有序性和目的性并没有作出满意的解答。

苏联学者A.И.乌耶莫夫提出参量型一般系统论。他认为贝塔朗菲的一般系统论是用同构和同态等类比形式创立的,在实际运用中受到一定的限制。人们已经发现50多种独立的类比形式,其中许多可以用于发展类比型一般系统论,因此这种理论还可以得到发展。但对不同的系统进行类比,不是建立一般系统论的唯一途径。参量型一般系统论是用系统参量来表达系统的原始信息,再用电子计算机建立系统参量之间的联系,从而确定系统的一般规律。

一般系统论发展中出现的另一个重要领域是数学系统论或一般系统的数学理论。其代表人物有M.D.梅萨罗维茨、A.W.怀莫尔和G.J.克利尔。

   


新系统论

中国学者林福永教授1988年提出和发表了一种新的一般系统论,称为一般系统结构理论。一般系统结构理论从数学上提出了一个新的一般系统概念体系,特别是揭示系统组成部分之间的关联的新概念,如关系、关系环、系统结构等;在此基础上,抓住了系统环境、系统结构和系统行为以及它们之间的关系及规律这些一切系统都具有的共性问题,从数学上证明了,系统环境、系统结构和系统行为之间存在固有的关系及规律,在给定的系统环境中,系统行为由系统基层次上的系统结构决定和支配。这一结论为系统研究提供了精确的理论基础。在这一结论的基础上,一般系统结构理论从理论上揭示了一系列的一般系统原理与规律,解决了一系列的一般系统问题,如系统基层次的存在性及特性问题,是否存在从简单到复杂的自然法则的问题,以及什么是复杂性根源的问题等,从而把一般系统论发展到了具有精确的理论内容并且能够有效解决实际系统问题的高度。

2014年,有人继承和发展一般系统结构理论,提出了一种新的一般系统结构理论:一般系统模块理论。该理论的要点包括:1、提出“一般系统模块论”,认为该理论是现代系统论的新发展;2、提出“自主创新”、“协同创新”的重要理论基础是“一般系统模块论”;3、提出“独立模块”的概念,指出正是由于模块的独立性才使系统创新(“自主创新”、“协同创新”)成为可能;4、用“一般系统模块论”将战略思维、系统思维、辩证思维、法治思维和创新思维等有机结合在一起,使改革方法论更能充分发挥对实践的指导作用。

   


其他

一些物理学家、生物学家和化学家还在各自的领域中沿着贝塔朗菲开创的开放系统理论深入研究一般系统论,并得到了关于复杂系统的一系列重要规律。其中最著名的有:I.普里戈金的耗散结构理论,M.艾根的超循环理论和H.哈肯的协同学,拉兹洛的广义进化论等,以及中国学者曾邦哲的结构论-泛进化论、邓聚龙的灰色系统论、吴学谋的泛系论、张颖清的全息生物学等系统理论。

   


区别

编辑

贝塔朗菲的一般系统论是在20世纪40年代提出来的。这一理论建立的背景是经典科学的两个分支的基本观念在科学思想的领域内占据统治地位。一个是牛顿力学,它的机械决定论的世界观和线性的思维方式使它倡导对事物作分解的还原式的研究。另一个是热力学,当然还是平衡态的或近平衡态的热力学,因为它注目于热力学第二定律引起的世界的无序化、离散化的趋向,导致局限于对事物的大数的统计的认识。因此贝塔朗菲在其代表作《一般系统论》中说:当时确立了“严格机械决定论的自然观”,“它指出,宇宙是建立在随机地、无秩序地运动着的无个性粒子活动的基础上的。这些粒子由于数量极大,才产生了统计性的秩序和规则”。这“迫使我们几乎把所研究的每样东西都当作由分离的、零散的部分或因素所组成”。贝塔朗菲是个理论生物学出身的学者,他说他痛感到“当时流行的机械论方法所忽视的并起劲地加以否定的,正是生命现象中最基本的那些东西”。而生命的基本特征是组织,这表明它的各个部分相互作用,构成一个密不可分的整体,即生命有机体。“机械论世界观把物质粒子活动当作最高实在”,所以有机体的概念完全处于它的视域之外。贝塔朗菲断言:“经典物理学在无组织的复杂事物的理论发展上是非常成功的。……这种无组织的复杂事物的理论最终归结为随机和概率定律以及热力学第二定律。相反,今天的基本问题是有组织的复杂事物”。在新生的生命科学、行为科学和社会科学的发展中到处都冒出了有机体和组织性的问题,“因此现代科学提出的一个基本问题是关于组织的一般理论”。贝塔朗菲认为一般系统论的建立能够满足这种需要。

但是系统论据以提出的思想背景(或语境)也制约了它的基本观念:用机体论的模式来代替机械论,将生物系统中组成部分之间动态相互作用的规律性概括为一般系统的规律性。贝塔朗菲说:“我曾提出一种生物学的机体论概念,它强调把有机体作为一个整体或系统来考虑 ”,他所做的“不妨简称为机体论革命,它的核心是系统的观念”。总之,贝塔朗菲把整体性作为系统的核心性质,而他把生物体的机体性视为这种整体性的典范。他对生物整体性作了如下的论述。物理的组织是由先已存在的分离的要素如原子、分子等发生的联合,而生物的整体则是由原来未分的原始整体分化为在结构和功能上彼此分异的各个专门化部分然后再产生它们的协作。他说:“只有从还未分化的整体状态转化到各组成部分的分化状态上才可能有进步,但这就意味着各组成部分被固定在某种机能上。因此,渐进分异也就是渐进机构化。”“机构化”使生物系统的组成部分发生了分离化的趋向。“然而,在生物学领域中,机构化决不是完全的。虽然有机体部分地机构化了,但仍保持为一个统一系统。”这是因为“中心化原理在生物学领域中有特殊重要的意义。渐进分异往往与渐进中心化相联系”。这两种看来相互矛盾的现象的联系是怎样实现的呢?这是因为在渐进机构化的过程中,所形成的各部分之间 “存在着等级秩序”,“某些部分获得支配作用而决定整体的行为”,这样“统治部分和下面的从属部分发生了”,如生物体“受神经系统最高中心支配和统辖”。这种中心化保证了系统的整体性不变。“同时,渐进中心化原理就是渐进个体化的原理。‘个体’可以定义为中心化的系统。严格地说,在生物学领域这是一种极限情况,只是在个体发育上和种系发育上近似地接近这种状况,生长发育中的生物体通过渐进中心化愈来愈统一、‘愈不可分’”。由于中心化可以提高系统的整体性,所在贝塔朗菲的心目中中心化愈强的系统就是愈高级的系统,在生物界中也是中心化愈高的物种是进化程度愈高的物种,如他所说:“沿着进化的阶梯上升,中心化不断增强”。看来“个体”构成了贝塔朗菲系统观的最高境界,它实质上就是实现了集中统一控制的系统。根据这个观点,贝塔朗菲说:“……一群乌合之众是没有‘个体性’的,为了使一个社会结构同另一个区别开来,必须围绕某一个体结合起来。根据这个重要理由,一个象湖泊或森林那样的生物群落就不是‘有机体’。因为个体有机体往往要在不同程度上形成中心。”在这一点上我们将在下面看到圣菲研究所与贝塔朗菲背道而驰,它研究的正好是多个体或说多主体的、无中心的系统,如生态系统(包含被贝塔朗菲视为非系统的生物群落)。

另一方面我们看到贝塔朗菲由于用系统论的机体来对抗机械论的粒子,过分强调了整体性、有序性和统一性的观念,而完全否定了局部性、无序性和分散性的观念。而由于他实质上把整体性、组织性的概念等同于“有序性”的概念,以致使系统论与机械论的对立几乎变成了有序性观念与无序性观念的对立,如他说:“物理学上的规律是‘无序的规律’”;“在19世纪和20世纪上半叶,世界被设想为无序的”,“现在我们正在寻求关于世界的另一个基本观点——世界是组织”。无序性确实起消极的破坏的作用,但它也具有积极的促进重建的作用。以后埃德加·莫兰正确地指出组织性作为重组、发展的有序性实际上是有序性和无序性的统一。他特别强调“从噪声产生有序”的原理。实际上普里高津在他1969年发表的“耗散结构”理论中已包含无序性(随机性)的积极作用的观念,但贝塔朗菲在他的《一般系统论》的修订版中吸取了普里高津的“开放系统”思想而未接受这一观念。这里的关键问题在于要深刻地运用辩证法观点(即莫兰所说的“两重性逻辑”的原则)来把握有序性和无序性各自具有的两面效用。生物不能产生于绝对有序的环境里,所以我说过生物既因热力学第二定律而死,也因热力学第二定律而生。当然,从总的认识发展的历史过程来看,贝塔朗菲这种认识局限性也是可以理解的。在经典力学和经典热力学统治科学思想领域的时期,宜于先用组织的有序性的观念来反对机械的无序性的观念;但在科学思想进一步发展的过程中,认识应当从有序性和无序性根本对立的方面过渡到它们对立统一的方面。这符合认识的辩证法的正、反、合的发展过程。
16
 楼主| 发表于 2018-11-6 21:06:51 | 只看该作者
中医气化说主要是在病理方面的特别反应作用,就是形成非生理信号症状级第一级反应,而病理学信号反应级研究的都是症状级第一级之后的病理信号反应。
就是免疫反应过强之类,然免疫反应过强的原因,却是在病理学信号级第一级,病理学不知。
气化主要是卫气的非生理信号反应,不是营气,因营气是在脉中的气。
而阴,阳,气,湿等症状是病理气化的先决条件,没有它们的结构构象变化,卫气是正常分布的,不会有病理信号气化反应。
15
 楼主| 发表于 2018-11-6 14:12:43 | 只看该作者
而对于结构和性能不同的系统,它们的同态模型的行为特征却可能存在着形式上的相似性
14
发表于 2018-11-5 21:57:28 | 只看该作者
对于许多复杂系统,不能用数学形式进行定量的研究,因此就有必要将数学同构的概念拓广为系统同构。人们常常把具有相同的输入和输出且对外部激励具有相同的响应的系统称为同构系统,而把通过集结使系统简化而得到的简化模型称为同态模型。一个系统根据研究的目的不同可以得出不同的同态模型,而对于结构和性能不同的系统,它们的同态模型的行为特征却可能存在着形式上的相似性。不同的学科领域之间和不同的现实系统之间存在着系统同构的事实,是各学科进行横向综合和建立一般系统论的客观基础。



同态是一个很重要的概念。谢谢分享!
13
 楼主| 发表于 2018-11-3 02:01:39 | 只看该作者
8根据病理信号物质分子离子的个数的多少,可以知相应病理信反应的强弱,或下级胞内化学反应的病理性增强或减弱的程度大小。
9还可以预测有何种非生理合成反应物质病理物质被合成。
10以结束当前病理学研究病理信号物质只能被动以检测的有限的发现。
11医学成为真正的明确的能治愈各种疾病的科学。
12
 楼主| 发表于 2018-11-3 01:58:29 | 只看该作者
关联性是指系统与其子系统之间、系统内部各子系统之间和系统与环境之间的相互作用、相互依存和相互关系。离开关联性就不能揭示复杂系统的本质。
11
 楼主| 发表于 2018-11-3 01:57:22 | 只看该作者
1密度级数与病理反应中产生症状的种类数有关。
2级密度数数大小与这一级中的受体病理变化的个数多少有关。
3密度级数越大病理反应中症状的种类就越多,产生的物质扩散的分子数越多。
4级密度数越大,这一级中的受体病理构变的受体个数越多,产生扩散的物质分子越多。
5建立扩散物质的密度级数和级密度数与扩散物质分子数的关系式,以计算扩散的物质的分子个数。
6由扩散物质的总的分子个数,计算产生的各种离子的个数
7根据不同病理信号物质产生应有离子的种类不同,推算产生的相应的病理信号物质分子离子的个数。
8根据病理信号物质分子离子的个数的多少,可以知相应病理信反应的强弱,或下级胞内化学反应的病理性增强或减弱的程度大小。
9还可以预测有何种非生理合成反应物质病理物质被合成。
10以结束当前病理学研究病理信号物质只能被动以检测的有限的发现。
11医学成为真正的明确的能治愈各种疾病的科学。
10
 楼主| 发表于 2018-11-2 23:20:57 | 只看该作者
9
 楼主| 发表于 2018-11-2 22:25:37 | 只看该作者
Ts素合成减少时
(一 ) 第一级IL-1合成多增加了第二级IL-2的合成增加。
1Ts素只在第二级的Th受体有拮抗增加结合的IL-1的生理作用。
2但是Ts素并没有拮抗IL-1合成增加增多的生理作用。
3在Ts素合成减少时,对于第一级IL-1合成多增加,Ts素原本就没有拮抗作用,这种条件中,就更没有拮抗的作用了。
4由于Ts素合成的减少,它们在第二级的拮抗过多的IL-1与第二级Th受体的结合的生理功能就根本不存在了。
因为对于第一级IL-1在第二级与Th受体的结合拮抗作用的不能实现,过多的第一级IL-1素与第二级Th受体的结合就会产生过多的第二级IL-2素了。
(二)外来素在第二级与Th受体的结合增加IL-2素的合成。
1由于Ts素合成的减少,它们不仅不能拮抗过多的第一级IL-1素与第二级Th受体的结合,也根本就没有对于外来素在第二级与Th受体的结合的拮抗作用。
2由于Ts素合成的减少,外来素在第二级与Th受体的结合就增加IL-2素的合成了。
-------------------------------------------------------------------------

Ts素被拮抗合成减少时 第四级B浆细胞合成抗体的增多受体
一与第二级IL-2素的合成增加有关。
1Ts素被拮抗合成减少时,第二级IL-2素的合成增加将不会被Ts素拮抗了。
2第二级IL-2素的合成增加与第三级B细胞受体的结合,可增加浆细胞数及抗体的合成
3第二级IL-2的合成增加可以与第一级IL-1素的合成增多有关。
4而第二级IL-2的合成增加又可以与在第二级Th受体上的外来素的结合有关。     
IL-2素或外来素直接与第三级B细胞受体的结合,可增加浆细胞数及抗体的合成。
5第一级IL-1生理拮抗素是IL-2素
二Ts素是被外来素拮抗合成减少的
8
 楼主| 发表于 2018-11-2 22:19:42 | 只看该作者
dffaaoo 发表于 2018-11-2 22:13
关联性

关联性是指系统与其子系统之间、系统内部各子系统之间和系统与环境之间的相互作用、相互依存和相 ...

病理联级反应实际是一种混级或混合级的反应。
是不同种类的生理联级相互交错的反应。
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|导航中医药 ( 官方QQ群:110873141 )

GMT+8, 2025-5-11 19:57 , Processed in 0.051613 second(s), 17 queries .

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表